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A Geometrical Representation of Entanglement
as Internal Constraint
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We study a system of two entangled spin 1/2, were the spin’s are represented by a sphere
model developed within the hidden measurement approach which is a generalization
of the Bloch sphere representation, such that also the measurements are represented.
We show how an arbitrary tensor product state can be described in a complete way
by a specific internal constraint between the ray or density states of the two spin 1/2.
We derive a geometrical view of entanglement as a “rotation” and “stretching” of the
sphere representing the states of the second particle as measurements are performed on
the first particle. In the case of the singlet state entanglement can be represented by a
real physical constraint, namely by means of a rigid rod.
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1. INTRODUCTION

Within the hidden measurement approach to quantum mechanics (Aerts,
1986, 1987) entanglement has been studied for a system consisting of two en-
tangled spin 1/2 particles in the singlet state (Aerts, 1991a,b). In such a case,
typical EPR correlations are encountered, meaning that if one of both spins
collapses in a certain direction under the influence of a measurement, then the
other spin collapses in the opposite direction. In Coecke (1998, 2000) these re-
sults were generalized to give a description of entanglement as a hidden cor-
relation between the proper states of the individual subsystems. Our aim is to
elaborate on these results, more specifically, we want to develop a geometri-
cal representation of entanglement by means of an internal constraint between
the states of the spin 1/2 particles, represented on the sphere, for an arbi-
trary tensor product state that is not necessarily the singlet state. We do this
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by introducing constraint functions, which describe the behavior of the state
of one of the spins if measurements are executed on the other spin. In Aerts
(1991b) the internal constraint was given a real physical classical mechanics rep-
resentation, namely by means of a rigid rod. An interesting question remained
whether it is also possible for non singlet states to invent a similar mechanistic
device.

For the individual spin 1/2 entities we use a sphere model representation de-
veloped within the hidden measurement approach to quantum mechanics (Aerts,
1986, 1987, 1991a; Aerts and Durt, 1994a, b, 1997; Aerts et al., 1997), which
is a generalization of the Bloch or Pauli representation, such that also the mea-
surements are represented. We identify a parameter r ∈ [0, 1], arising from the
Schmidt diagonal decomposition, that is a measure of the amount of entanglement,
such that for r = 0 the system is in the singlet state with maximal entanglement
(and we recover previous results), and for r = 1 the system is in a pure product
state. For intermediate values of r we encounter new situations in which entangle-
ment is expressed by a rotation and distortion of the sphere, representing the state
of the single spin 1/2 entities.

Concerning measurements and their effect on one of the spins in an entangled
state when executed on the other spin, we consider on the one hand a measurement
on a pure state followed by a collapse of the state, as prescribed by Von Neumann’s
formula, and on the other hand a measurement on a mixed state resulting in a new
mixed state, as prescribed by Luder’s formula. We will show that an arbitrary
collapse measurement on one spin provokes a rotation and a stretching on the
other spin, which can be described in detail by means of the sphere model, and an
arbitrary measurement on one of the two spins in a density state does not provoke
any change in the partial trace density matrix of the other spin, i.e., the spins
behave as separated entities for such measurements.

2. THE SPHERE MODEL

The sphere model is a generalization of the Bloch sphere representa-
tion, such that also the measurements as well as a parameter for nondeter-
minism can be represented (Aerts et al., 1997). In this model, a spin 1/2
state |ψ〉 = (cos θ

2 e−iφ/2, sin θ
2 eiφ/2) is represented by the point u(1, θ, φ) =

(sin θ cos φ, sin θ sin φ, cos θ ) on the surface of a three-dimensional unit sphere,
often called Bloch or Poincaré sphere. All points of the Bloch sphere rep-
resent states of the spin, such that points on the surface correspond to pure
states, while interior points correspond to density states. This is because
an arbitrary point u(r, θ, φ), r ∈ [0, 1], θ ∈ [0, π ], φ ∈ [0, 2π ], of the Bloch
sphere can in general be written as a convex linear combination u(r, θ, φ) =
ru(1, θ, φ) + (1 − r)u(0, θ, φ) from which follows the corresponding density
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state

D(r, θ, φ) = rD(1, θ, φ) + (1 − r)D(0, θ, φ)

= 1

2

(
1 + r cos θ r sin θ e−iφ

r sin θ eiφ 1 − r cos θ

)
(1)

In this expression D(1, θ, φ) = |ψ〉〈ψ | is the usual density state representa-
tion of a pure state, while D(0, θ, φ) is the density matrix representing the center
of the sphere (the singlet state). Next to this, the sphere model allows a representa-
tion of measurements. Without loss of generality we can demonstrate the effect of
such a measurement by considering states that are on the straight line connecting
the North pole D(1, 0, φ) = |0〉〈0| and the South pole D(1, π, φ) = |1〉〈1| of the
sphere (we use the convention that |0〉 corresponds to spin up or (1, 0), while
|1〉 corresponds to spin down or (0, 1)). In this case, the spin is in density state
D(r, 0, 0). After a measurement of the spin in the direction u(1, θ, φ), the density
state of the spin becomes (by means of Luder’s Formula)

D = P (θ, φ)D(r, 0, 0)P (θ, φ) + (1 − P (θ, φ))D(r, 0, 0)(1 − P (θ, φ)) (2)

where P (θ, φ) is the projector on the ray state |θφ〉, and hence equals D(1, θ, φ).
For θ ∈ [0, π

2 ], this results in the density matrix

D = 1

2

(
1 + r ′ cos θ r ′ sin θ e−iφ

r ′ sin θ eiφ 1 − r ′ cos θ

)
= D(r ′, θ, φ) (3)

where r ′ = r cos θ . A similar expression D(r ′, θ ′, φ′), with r ′ = r cos θ ′, θ ′ =
π − θ and φ′ = φ + π , is obtained for θ ∈ [π

2 , π ]. If we consider the sphere we
can see easily that in both cases the point u(r, 0, 0) is transformed into the point

(u(r, 0, 0)u(1, θ, φ))u(1, θ, φ) (4)

This means that we have identified a very simple mechanics to describe the
quantum measurement effect on a mixed state in our sphere model. The effect is
just an ordinary orthogonal projection on the direction of the spin measurement
of the point that represents the density state of the spin in the sphere model, as
represented in Fig. 1.

In general, suppose that we have a spin state represented by the point u(s, α, β)
and we perform a spin measurement in direction (θ, φ). If we denote the orthogonal
projection on the direction (θ, φ) by E(θ, φ), the new state after this measurement
is given by


E(θ, φ)u(s, α, β) = u(s cos θ, θ, φ) if |α − θ | ∈
[
0,

π

2

]
E(θ, φ)u(s, α, β) = u(s cos(π − θ ), π − θ, φ + π ) if |α − θ | ∈

[π

2
, π

] (5)
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Fig. 1. Effect of the measurement on a single-spin 1/2.

It is possible to give a nice geometrical presentation of how the spin state changes
under the influence of measurements in different directions, as shown in Fig. 2.
More concretely, consider a little sphere with as North pole the point u(s, α, β),
the point that represents the spin state, and as South pole the center of the big
sphere of the model. The spin state is transformed to the point of intersection
between this little sphere and the direction of the measurement performed. Hence
the points of the little sphere are those points representing the states where the
spin state can be transformed to, under arbitrary angles of measurement.

3. CONSTRAINT FUNCTIONS

A system of two entangled spin 1/2 is described by means of an arbitrary unit
vector |ψ〉 ∈ C

2
1 ⊗ C

2
2 in which C

2
1 and C

2
2 are two copies of C

2, which we label
with indices 1 and 2 with the sole purpose of identifying them. The vector |ψ〉

Fig. 2. A geometrical presentation of how the spin state
changes under the influence of measurements in different
directions.
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can always be written as the following linear combination |ψ〉 = �ijλij |ei
1〉 ⊗ |ej

2〉
where λij ∈ C, and {|ei

1〉} and {|ej

2〉} are bases of C
2
1 and C

2
2 respectively. When

we carry out a collapse measurement on the first spin, Von Neumann’s formula
describes how it collapses into a spin state described by the unit vector |x1〉 ∈ C

2
1,

thus transforming the entangled state |ψ〉 into (P|x1〉 ⊗ I )(|ψ〉) where P|x1〉 is the
orthogonal projector on |x1〉 in C

2
1, and I is the unit operator in C

2
2. The result is that

the entangled spins end up in the following product state |x1〉 ⊗ �ijλij 〈x1, e
i
1〉|ej

2〉.
This means that as a consequence of the measurement on the first spin, collapsing
its state to |x1〉, the second spin collapses to the state �ijλij 〈x1, e

i
1〉|ej

2〉.
In an analogous way we can show that if a measurement is performed on the

second spin, resulting in a collapse to the state x2 ∈ C
2
2, the state of the first spin

becomes �ijλij 〈x2, e
j

2〉|ei
1〉. Because of this, we arrive at the following definition.

Definition 1.: Constraint Functions We define the constraint functions F12(ψ)
and F21(ψ) related to ψ in the following way

F12(ψ) : C
2
1 → C

2
2 : |x1〉 �→

∑
ij

λij

〈
x1, e

i
1

〉∣∣ej

2

〉
(6)

F21(ψ) : C
2
2 → C

2
1 : |x2〉 �→

∑
ij

λij

〈
x2, e

j

2

〉∣∣ei
1

〉
(7)

In other words, the constraint functions map the state where one of the spins
collapses to by a measurement to the state that the other spin collapses to under
influence of the entanglement correlation. A detailed study of the constraint func-
tions can give us a complete picture of how the entanglement correlation works as
an internal constraint. Before we arrive at this complete picture, however, we give
some properties of the constraint functions.

One can show that the following properties hold for the constraint functions
and the relation between the two constraint functions F12(ψ) and F21(ψ):

Proposition 1. The constraint functions are canonically defined.

Proposition 2. The constraint functions are conjugate linear.

Proposition 3. 


D1(ψ) ≡ tr
C

2
2
|ψ〉〈ψ | = F21(ψ) ◦ F12(ψ)

D2(ψ) ≡ tr
C

2
1
|ψ〉〈ψ | = F12(ψ) ◦ F21(ψ)
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or in other words, F21(ψ) ◦ F12(ψ) equals D1(ψ), i.e., the partial trace density
matrix over C

2
2 and F12(ψ) ◦ F21(ψ) equals D2(ψ), i.e., the partial trace density

matrix over C
2
1.

Proposition 4. For |x1〉 ∈ C
2
1 and |x2〉 ∈ C

2
2 we have

〈F12(ψ)(|x1〉), x2〉 = 〈x1, F21(ψ)(|x2〉)〉∗ (8)

To derive a complete view of how entanglement works as an internal con-
straint for a 2-particle system, we now work out the relation between the
Schmidt diagonal form (e.g. Nielsen and Chuang, 2000) and the constraint func-
tions. We begin by choosing the base |x1

1〉 = (cos θ
2 e−iφ/2, sin θ

2 eiφ/2), |x2
1 〉 =

(−i sin θ
2 e−iφ/2, i cos θ

2 eiφ/2) in C
2
1. With respect to this basis, expression (1) for

a general density matrix becomes

D1(ψ) = 1

2

(
1 + r 0

0 1 − r

)
(9)

One can choose a basis {|x1
2〉,|x2

2〉} in C
2
2 given by

∣∣x1
2

〉 =
√

2√
1 + r

F12(ψ)
(∣∣x1

1

〉)
,

∣∣x2
2

〉 =
√

2√
1 − r

F12(ψ)
(∣∣x2

1

〉)
(10)

One can show that ‖x1
2‖2 = 1 = ‖x2

2‖2 and

D2(ψ)
(∣∣x1

2

〉) = 1 + r

2

∣∣x1
2

〉
, D2(ψ)

(∣∣x2
2

〉) = 1 − r

2

∣∣x2
2

〉
(11)

Hence |x1
2〉 and |x2

2〉 are normalized eigenvectors of D2(ψ) with eigenval-
ues (1 + r)/2 and (1 − r)/2 respectively. Therefore, with respect to the basis
{|x1

2〉, |x2
2 〉}, D2(ψ) is expressed as

D2(ψ) = 1

2

(
1 + r 0

0 1 − r

)
(12)

Finally, let us find the expression for ψ with respect to the basis {|x1
1〉 ⊗

|x1
2 〉, |x1

1 〉 ⊗ |x2
2〉, |x2

1 〉 ⊗ |x1
2 〉, |x2

1 〉 ⊗ |x2
2〉} of C

2
1 ⊗ C

2
2. In general, this expression

is of the form ψ = a|x1
1〉 ⊗ |x1

2〉 + b|x1
1 〉 ⊗ |x2

2〉 + c|x2
1 〉 ⊗ |x1

2〉 + d|x2
1 〉 ⊗ |x2

2〉.
However, since

F12(ψ)
(∣∣x1

1

〉) = a|x1
2

〉 + b
∣∣x2

2

〉 =
√

1 + r√
2

∣∣x1
2

〉
(13)

F12(ψ)
(∣∣x2

1

〉) = c
∣∣x1

2

〉 + d
∣∣x2

2

〉 =
√

1 − r√
2

∣∣x2
2

〉
(14)
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we obtain

a =
√

1 + r√
2

, b = 0, c = 0, d =
√

1 − r√
2

(15)

Thus, the Schmidt diagonal form of |ψ〉 is given by

|ψ〉 =
√

1 + r√
2

∣∣x1
1

〉 ⊗ ∣∣x1
2

〉 + √
1 − r√

2

∣∣x2
1

〉 ⊗ |x2
2〉 (16)

4. MEASUREMENTS

With all the above we can now concentrate on the role of measurements.
More particularly, we analyze how a measurement, carried out on one subentity of
an entangled system, affects the state of the other subentity of which the entangled
system is composed. We discuss both the effect of a measurement on density states
as described by Luder’s formula and the effect of a collapse measurement on a
pure state as described by Von Neumann’s formula.

To describe the effect of a measurement on the density state of a subsys-
tem we use Luder’s formula (2), where in this case the initial density state
is calculated from the Schmidt diagonal form (16) derived above. Choosing
bases {x1

1 = (1, 0) , x2
1 = (0, 1)} in C

2
1 and {x1

2 = (1, 0) , x2
2 = (0, 1)} in C

2
2, one

can calculate the density state D (ψ) = |ψ〉 〈ψ | corresponding with the pure
state |ψ〉 . After the measurement this state has changed into the density state
D′ (ψ) given by Luder’s formula: D′ (ψ) = (P (θ, φ) ⊗ 1) D (ψ) (P (θ, φ) ⊗ 1) +
((1 − P (θ, φ)) ⊗ 1) D (ψ) ((1 − P (θ, φ)) ⊗ 1), from which we can calculate
D1(ψ), i.e., the partial trace density matrix to C

2
1, obtaining

D1(ψ) = 1

2

(
1 + r cos2 θ r sin θ cos θ e−iφ

r sin θ cos θ eiφ 1 − r cos2 θ

)
(17)

This is the same density matrix as we found in expression (3), i.e. after carrying
out a measurement on a single spin 1

2 in a density state. On the other hand, if we
calculate D2(ψ), i.e., the partial trace density matrix to C

2
2, we find

D2(ψ) = 1

2

(
1 + r 0

0 1 − r

)
(18)

which is independent of (θ, φ) . From expressions (17) and (18), one derives that
a measurement prescribed by Luder’s formula on one spin does not provoke any
change in the partial trace density matrix of the other spin: in other words, the
spins behave as separated entities for such measurements.

Let us now study what happens when a collapse measurement is per-
formed on one of the subsystems in the entangled system. Since the constraint
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functions describe exactly this, studying collapse measurements means studying
the constraint function, more specifically how they map points of the sphere (i.e.,
quantum states) onto one another. As a point of departure, we choose ψ and bases
as in the above, where both bases are connected through Eq. (10). From these
equations, we first observe that within the sphere model, they imply that the north
(south) pole of the first sphere is mapped onto the north (south) pole of the sec-
ond sphere. Next, it follows immediately that F12(ψ) does not conserve the norm.
Indeed, the norm of F12(ψ)(|x〉) for an arbitrary vector |x〉 = x(θ, φ) is as follows:

‖F12(ψ)(|x〉)‖2 = 1 + r

2
cos2 θ

2
+ 1 − r

2
sin2 θ

2
= 1

2
(1 + r cos θ ) (19)

If we consider for a moment the angle θ as a variable, we see that the square
of the norm varies between (1 + r)/2 and (1 − r)/2, for the north (θ = 0) and
the south (θ = π ) pole of the sphere respectively. Actually, this is where the
factors

√
2/(1 + r) and

√
2/(1 − r) in the original definition of |x1

2〉 and |x2
2〉 in

Eq. (10) come from. Not only the norm, but also orthogonality is in general not
conserved by F12(ψ). For example, using the conjugate linearity of the constraint
functions, we find that the two orthonormal vectors |ψu〉 = ψ(θ, φ) and |ψ−u〉 =
ψ(π − θ, φ + π ) are mapped to

F12(ψ)(ψu) =
√

1 + r

2
cos

θ

2
eiφ/2 x1

2 +
√

1 − r

2
sin

θ

2
e−iφ/2 x2

2 (20)

F12(ψ)(ψ−u) =
√

1 + r

2
i sin

θ

2
eiφ/2 x1

2 − i

√
1 − r

2
cos

θ

2
e−iφ/2 x2

2 (21)

For 0 �= θ �= π orthogonality is conserved if 〈F12(ψ)(|ψu〉), F12(ψ)(|ψ−u〉)〉 = 0
which means that r = 0. Translated on the sphere this means that diametrical
opposite points are mapped to diametrical opposite points only in the special case
r = 0 (except for the north and south pole, which are always mapped onto the
north and south pole of the second sphere). In other words, orthogonality only is
generally conserved for the singlet state. While the norm and orthogonality are in
general not conserved, we can look at the normalized image corresponding to a
state |x〉 = x(θ1, φ1). In other words, we would like to know where the state

|y〉 = y(θ2, φ2) = 1

‖F12(ψ)(|x〉)‖F12(ψ)(|x〉) (22)

lies on the sphere. Therefore, we compare corresponding inproducts on both
spheres, and we obtain that

〈
y, x1

2

〉 =
√

1 + r

1 + r cos θ1

〈
x, x1

1

〉∗
(23)
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Again, we see that only for the singlet state inproducts are equal (and consequently,
antipodal points on the sphere are mapped to antipodal points, as mentioned above).
An interesting case is to look at the image of the equator, or in other words the
points for which θ1 = π

2 . In this case

〈
y, x1

2

〉 = √
1 + r

〈
x, x1

1

〉∗ = √
1 + r

1√
2
e−i(φ1)/2 (24)

Translating this to the sphere model, using the following formula which expresses
the relation between the inproduct of two vectors in C

2
2 and the scalar product of

the corresponding points in the sphere representation:

1 + ψ(θ ′, φ′)ψ(θ, φ)

2
= |〈ψ(θ ′, φ′), ψ(θ, φ)〉|2 (25)

applied to |y〉 and |x1
2〉, we obtain

1 + y(θ2, φ2)x1
2 (θ, φ)

2
= 1 + r

2
(26)

and as a consequence: y(θ2, φ2)x1
2 (θ, φ) = r . This means that on the sphere,

the elements of the equator are mapped onto a cone that makes an angle β

with the north south axis of the second sphere, such that cos β = r. Once more,
only for r = 0 this is again an equator, hence conserving the angle between the
elements of the equator and the north pole. For r ∈ ]0, 1[ we obtain a cone with
an angle 0 < β < π

2 , which means that the equator has ‘raised’ to the north. For
r approaching 1 the sphere is stretched more and more to the north pole of the
second sphere. Remember that in this limit case the superposition state becomes
a product state, and this fits with the fact that for product states indeed the map
F12(ψ) maps the first element of the product to the second. To see the general
scheme we use Eq. (23), which yields

y(θ2, φ2)x1
2 (θ, φ) = r + cos θ1

1 + r cos θ1
(27)

From this result it follows that straight lines through the center of the left sphere
are mapped onto straight lines through the point u (r, 0, 0) along the north south
axis in the second sphere. This gives a nice geometrical representation of this
‘stretching’ on the second sphere, as shown in Fig. 3. Again, this shows that
indeed only for the singlet state antipodal points of the first sphere are mapped
onto antipodal points of the second sphere.

5. CONCLUSIONS

We elaborated a formalism to model entanglement as an internal constraint.
More specifically, we show that two spin 1/2 particles in a nonproduct state can be
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Fig. 3. Straight lines through the center of the left sphere are mapped onto straight lines
through the point u(r,0,0) along the north south axis in the second sphere.

described in a complete way by extracting entanglement into an internal constraint
between the states of the particles. We introduce constraint functions, which
describe the behavior of the state of one of the spins if measurements are executed
on the other spin. In this way we can substitute the nonproduct state by the states
of the individual particles and the internal constraint function. We make use of the
sphere model representation for the spin’s that was developed in Brussels, allowing
for an easy to grasp visual support for the developed formalism. In deriving the
effect measurements on one spin of an entangled state have on the other one,
we differentiated between two types of measurements: measurements, of which
the action on a mixture of states is described by Luder’s formula, and collapse
measurements, of which the action is described by Von Neumann’s formula. Our
result is that (1) an arbitrary Luder’s measurement on one spin in a mixed state
does not provoke any change in the partial trace density matrix of the other spin,
i.e., the spins behave as separated entities for such measurements; (2) an arbitrary
collapse measurement on one spin provokes a rotation and a stretching on the other
spin, which gives a nice geometrical representation of how entanglement works
as an internal constraint. The singlet state appears as a very special case in which
norm and orthogonality are conserved. This makes it easier to understand that for
the singlet state a real physical apparatus modelling the internal constraint can be
built, namely a rigid rod connecting the two spins. Since for non singlet states
norm and orthogonality are not conserved, and the geometrical representation
entails rotation and more importantly stretching of the sphere, it is not obvious
that a simple machinery (e.g. with a rigid rod) can be constructed in this case.
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